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EXECUTIVE SUMMARY 
PROBLEM 

Intermittent low-bandwidth communication environments, such as those encountered in U.S. Navy 
tactical radio and satellite links, have special requirements that do not pertain to commercial appli-
cations. They need a bandwidth-compression algorithm that limits the dependence of encoding 
symbols on previous state information because the loss of the previous state has a ripple effect on the 
interpretation of what follows. They also need a homing mechanism to permit synchronization at an 
arbitrary point in the broadcast message stream when reception is re-established, ideally, without 
negotiation between the transmitter and the receiver. 

APPROACH 

Small Text Compression (STC), introduced in this report, is a data compression algorithm  
intended to compress alphanumeric text by encoding it using 5-bit characters. 

STC supports synchronization at message boundaries using a uniquely identifiable 10-bit homing 
sequence. Compression state is not propagated across message boundaries. Messages are suitable 
atomic units of synchronization because partial corruption within a given message generally 
invalidates the entire message in receiving applications. 

The 5-bit character encoding of STC can be extended to encompass schema-based XML 
compression. This approach replaces XML element and attribute tags with integer constants the 
value of which have been predefined by traversing the applicable XML schema and enumerating its 
relevant nodes. Because the transmitter and the receiver already have identical knowledge of the 
mapping between integers and tags, that knowledge is not transmitted within the message. 

Within the bounds of an atomic message, further compression can be obtained by noting that fewer 
integer bits are required to map the children of a parent XML element when the identity of the parent 
element is known. An escape mechanism is provided for cases where a single 5-bit character is 
insufficient. 

CONCLUSIONS 

STC compresses 8-bit ASCII English text to approximately two-thirds of its original size 
regardless of text length. STC is superior to gzip and zlib for text lengths less than 100 characters, 
typical of chat user content, and is competitive in the 200- to 300-character range. 

The degree of XML schema-based compression depends on the verboseness of the original XML 
tags, and to some extent, the flatness of the hierarchy defined by the schema, both of which are 
application dependent. 

Overall compression of short TCP/IP messages is still limited by the TCP/IP envelope itself, which 
cannot be compressed and remain interoperable. 
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1. INTRODUCTION 

1.1 COLLABORATION DEFINITIONS 

Computer-based communication among two or more human users is called collaboration. Four 
basic types of collaboration employ primarily alphanumeric text: email, wiki, instant messaging, and 
chat (Table 1). These types can be differentiated by two properties. 

The first property is whether they require users to be connected to the same collaboration 
environment at the same time to communicate. A user who is connected to a specific collaboration 
environment is said to be present within that environment. Collaboration that requires the users  
to be present simultaneously is called synchronous collaboration. Collaboration that does not 
require their simultaneous presence is called asynchronous collaboration. Asynchronous collabora-
tion systems store messages to make them accessible when their recipients become available. 

The second property is whether user messages are addressed directly to users or addressed  
to meeting places. In the latter case, recipients, if there are any, receive messages by being present  
at the addressed meeting place. The distinction is analogous to the distinction between unicast and 
multicast in a local area network. Unicast messages directly address a specific network interface. 
Multicast messages, on the other hand, address a virtual port to which a number of network interfaces 
may be listening. 

Table 1. Characteristics of the four types of collaboration. 

 

Targeted Users Do Not 
Need to be Present  

to Receive Messages 
(Asynchronous) 

Targeted Users Need  
to be Present to Receive 

Messages 
(Synchronous) 

Messages Addressed 
Directly to Users 

(Unicast) 
Email Instant messaging 

Messages Addressed  
to a Meeting Place 

(Multicast) 
Wiki Chat 

Text chat, the subject of this report, is near-real-time synchronous collaboration addressing 
alphanumeric messages to a common meeting place, called a channel or chat room. Some chat 
servers support message logging. The ability to save messages for later retrieval endows these servers 
with asynchronous properties normally associated with email or wiki. Chat servers usually also 
implement instant messaging within a unified protocol by allowing messages to address both specific 
users and chat channels. All this can be a source of confusion when a chat server implements more 
than chat. It is important to keep the four collaboration concepts distinct because their implementa-
tion algorithms are distinct. 

1.2 INTERMITTENT LOW-BANDWIDTH CHAT 

In a traditional chat system, users connect to a centralized chat server over a network such as the 
Internet. Currently available off-the-shelf commercial products assume the existence of a reliable 
high-bandwidth network. In the U.S. Navy tactical environment, because of limitations in the radio-
frequency spectrum and platform dynamics, many units are limited to radio and satellite communica-
tion links through intermittent low-bandwidth connections. The performance of these links is similar 
to a bad connection over a dial-up modem. This report describes initial research aimed at mitigating 
these limitations. 
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The research focuses on addressing the following navy tactical user needs. The low-bandwidth 
environment necessitates identifying streamlined message protocols and data compression. The 
intermittent-connection environment also necessitates an efficient reconnection mechanism that 
requires little or no user interaction. The user must be able to view time-stamped past message 
content to see specifically what is missed during a connection interruption and to gain context  
when replacing the previous user during a user shift change. Finally, the user must be able to  
obtain feedback that critical messages sent to recipients have been received. 

1.3 REPORT ORGANIZATION 

This report is divided into two major sections. 

The first section examines the implementation of a chat server. It reflects experience and insight 
gained during the construction of a simple Internet Relay Chat (IRC) server used internally for 
debugging chat clients. 

The second section addresses text compression. After presenting an overview of the three basic 
categories of compression, it explores the compression-related issues of state containment and 
resynchronization in an intermittent-connection environment. It then presents an algorithm for 
compressing small text strings that is superior to existing text compression approaches, and an 
algorithm for compressing Extensible Markup Language (XML) text using a priori knowledge  
of the XML schemas on which the XML text is based. The section concludes by unifying the two 
algorithms to support highly compressed XML-based chat messages. 
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2. CHAT SERVER ARCHITECTURE 

2.1 CHAT SERVER ANATOMY 
2.1.1 Crossbar Switch 

A basic component of chat server construction is the crossbar switch object. To illustrate its 
function, consider a simple application where all the users are connected to the same server. The 
server maintains a list of current users and a list of channels (chat rooms) where at least one user  
is present. The crossbar switch implements the joins between the users and the channels. Figure 1 
shows an example with four users and four channels. The “U” nodes represent users, the “C” nodes 
represent channels, and the “J” nodes represent joins of a user to a channel (Figure 1). 

 

 

U 

U 

U 

U 

C C C C 

J 

J J 

J 

J 

J J 

Figure 1. User channel join diagram. 

Each join node has a link to the user node and to the channel node it joins. Separate links 
implement a list of all the join nodes of a given user (shown horizontally) and separate links 
implement a list of all the join nodes of a given channel (shown vertically). The various linked lists 
of nodes are implemented using forward and backward links to facilitate the removal of nodes from 
any position in the respective lists. 

A join node cannot exist without a link to a user node and to a channel node. A user node, on the 
other hand, can have zero or more join nodes attached, and a channel node can have one or more join 
nodes attached. User nodes, channel nodes, and join nodes have no common attribute types among 
them. Therefore, the user node, channel node, and join node object classes should be treated as 
distinct without any hierarchical dependencies of one to another. 
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Figure 1 gives the impression that the sequential order of nodes in the various linked lists forms  
a neat grid with respect to one another. This is an oversimplification to make the diagram less 
confusing. In practice, users can join and part channels randomly with respect to one another over 
time that can shuffle the sequential order of nodes on the linked lists. The algorithms described 
below, however, are not affected by this reordering. 

When a new user node is to be allocated, the allocation algorithm must ensure that the new user 
node will not be a duplicate. One could sequentially follow the links from one existing user node to 
the next, as shown in the diagram, to check the requested user name against each user node visited.  
If the number of users is quite large, however, this process is inefficient. A better approach for 
locating a user node given a user name is hashing. First the user name is converted into a hash value. 
The hash value is then used as an index into a hash table. The hash-table entries specify independent 
linked lists of user nodes for each respective hash value. Typically, the search time is significantly 
faster, despite the added time to compute the hash value, since the independent linked lists of user 
nodes are shorter than a single linked list of all user nodes. A similar approach may be used during 
the allocation of new channel nodes. 

When a new join node is allocated, the allocation algorithm must ensure that another join node 
does not already link to the same user and channel. In this case, a sequential search of the linked list 
of all the join nodes of the given user is sufficient because a user will not typically be joined to a 
large number of channels simultaneously. 

Regardless of the search methods employed, the comparisons may need to be case insensitive. 
IRC, for example, requires all nicknames and channel names to be case insensitive. Case-insensitive 
hash searches must map all uppercase and lowercase variations of a given name to the same hash 
value. 

User nodes and channel nodes have attributes related to their respective roles. User node attributes 
include login state, nickname, communication port, visibility to other users, and access privileges. 
Channel-node attributes include channel name, topic, visibility to users, and access restrictions. 

There are two types of join nodes. The first type represents a user who has personally joined the 
channel. The user receives messages that other users send to that channel and can send messages to 
other users listening to that channel. The second type of join node represents an invitation by another 
user for the invited user to join the channel. The join node appears on the linked list of the invited 
user, not that of the user issuing the invitation. No communication occurs between the channel and 
the invited user until the invited user accepts the invitation by personally joining the channel. The 
two types of join nodes are distinguished by an invitation flag attribute resident on the join node. 
2.1.1.1 Message Operations 

When a user logs into the server, a user node is created and added to the linked list of user nodes 
(shown at left in Figure 1). 

When a user personally joins a channel without an invitation, first the linked list of join nodes for 
the user (shown horizontally) is checked. If an invitation join node already exists for the requested 
channel, all that needs to be done is to clear the join-node invitation flag attribute to accept the 
invitation. If a join node exists for the requested channel that is not an invitation, the user already has 
joined the channel, so no action is required except perhaps to send a warning message to the user. If 
no join nodes exist on the linked list, or none for the requested channel, the list of existing channels 
(shown on top) is searched.  

When a user invites another user to join a channel, first the linked list of join nodes for the invited 
user (shown horizontally) is checked. If an invitation join node already exists for the requested 
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channel, no action is required. If a join node exists for the requested channel that is not an invitation, 
the invited user has already joined the channel, so no action is required except perhaps to send a 
warning message to the user issuing the invitation.  

In both cases, if the requested channel does not yet exist, a channel node is created and added to 
the linked list of channel nodes. A join node is also created. Links are established to connect the user 
node to the new channel node through the new join node. If, on the other hand, the requested channel 
already exists, only the join node is created and the respective links established. Finally, the invita-
tion flag attribute of the new join node is initialized to indicate whether it is an invitation or not. 

Regardless of the number of repeated invitation or personal join requests of a given user to a given 
channel, only one join node associates the user to the channel. The user node and channel node must 
exist, or be allocated, before the join node associating them can be allocated. This requirement can be 
enforced by requiring the user and channel nodes to serve as parameters to the join-node allocation 
algorithm. 

When the user sends a message to a channel, the linked list of join nodes for that user (shown 
horizontally) is searched to find the one linked to the desired channel node. Invitation join nodes are 
ignored. Then the linked list of join nodes for that channel (shown vertically) is sequenced to send a 
copy of the message to each user identified by the respective join node. Again, invitation join nodes 
are ignored. The join node for the user who generated the message is also ignored since it does not 
need a copy of its own message. 

When the user “parts” (leaves) a channel, the linked list of join nodes for that user (shown horizon-
tally) is searched to find the one linked to the desired channel node. The join node is removed from 
its two linked lists (shown horizontally and vertically) and discarded. Then the linked list of join 
nodes for the desired channel is checked to determine whether any other join nodes for users are still 
joined or invited to the channel. If none are detected, the channel node also is removed from the 
linked list of channel nodes (shown at top) and discarded. 

When the user logs off or is forced off the server, the linked list of join nodes for that user (shown 
horizontally) is sequenced to identify all channels to which the user is joined or invited. A “part” 
(departure) is performed on each respective channel as described above. Finally, the user node itself 
is removed from the linked list of user nodes (shown at left) and discarded. 
2.1.1.2 Presence Operations 

Chat user presence is information indicating the extent to which users are participating in the chat 
environment. 

A local user may receive presence information about a target user in two ways. The first way  
is for the local user to send the server a message explicitly requesting that the server report whether 
the target user is present. Local users typically do this when they first log into the server or join a 
channel so they can initialize a display of the current state. The other way is for the server to notify 
the local user when the server recognized that the presence of a target user has changed, which 
enables the local user to update the display when necessary. 

IRC defines commands to request the server to respond with user presence information. The server 
compiles the information by traversing the appropriate crossbar switch linked lists, reading the 
desired information from the visited nodes, formatting the information into messages, and sending 
these messages back to the requester. Each user node has a bit indicating whether the user is globally 
visible or invisible to all other users. Invisible user nodes are ignored during the link list traversal.  
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The server also generates messages indicating when a visible user joins or parts a channel. These 
messages are sent to all users who have joined the channel so that they can display an undated list 
of users currently joined on the channel. 

User presence in IRC is closely associated with chat room channels. A user can query for another 
user’s presence, but no mechanism enables the server to notify a user of changes in another user’s 
presence unless both users are joined to the same channel. 

The Extensible Message and Presence Protocol (XMPP), on the other hand, introduced the concept 
of a roster. The XMPP user obtains notification of changes in the user presence of the other users 
listed in its roster. 

A list of users in a roster is similar to a list of chat rooms a user has joined. Each can be conceived 
as a list of channels. Unlike chat room channels, however, the presence channels do not relay user-
specific messages. They only supply the user presence information of the respective user to which 
they are uniquely dedicated. When a user wishes to receive messages from a chat room, the user 
“joins” the chat room channel. When a user adds another user to its roster, the user “subscribes”  
to the other user’s presence channel, which suggests similar implementations using a crossbar switch 
object. 

The user whose presence the channel node supports is called its owner. Respective join nodes 
connect the presence channel node to the owner’s user node and to the user nodes of all the currently 
online users who have subscribed to the owner’s presence. This connection enables the owner, or the 
server on the owner’s behalf, to send a message indicating a change in the owner’s presence to all the 
other currently online users subscribed to that user’s presence. 

The presence of a user must be communicated at login time to all the other users who have 
subscribed to the user’s presence within their respective rosters. A user node will exist already  
for the user logging in when at least one other currently online user is subscribed to the user’s 
presence. Thus, the user logging in must search the linked list of user nodes to ensure that one does 
not already exist for itself before allocating a new one. This search must be made to ensure that the 
identity of the user logging in is unique. 

The message crossbar switch and the presence crossbar switch share the same linked list of user 
nodes (Figure 2). This linked list can be implemented by providing the user node with links to its 
message-join-node linked list and its presence join-node linked list. 

 
Figure 2. Links to user node. 
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2.1.1.3 Primitive Methods 
In addition to its constructor and destructor, the user node object includes the following methods: 

 UserNode getNextUserNode ( ) 
 UserNode getPreviousUserNode ( ) 

 JoinNode getFirstMessageJoinNode ( ) 
 JoinNode getFirstPresenceJoinNode ( ) 

 UserState getUserState ( ) 
 void setUserState ( UserState ) 

In addition to its constructor and destructor, the channel node object includes the following 
methods: 

 ChannelNode getNextChannelNode ( ) 
 ChannelNode getPreviousChannelNode ( ) 

 JoinNode getFirstJoinNode ( ) 

 ChannelState getChannelState ( ) 
 void setChannelState ( ChannelState ) 

In addition to its constructor and destructor, the join node object includes the following methods: 

 JoinNode getNextUserJoinNode ( ) 
 JoinNode getPreviousUserJoinNode ( ) 

 JoinNode getNextChannelJoinNode ( ) 
 JoinNode getPreviousChannelJoinNode ( ) 

 UserNode getUserNode ( ) 
 ChannelNode getChannelNode ( ) 

 JoinState getJoinState ( ) 
 void setJoinState ( JoinState ) 

In addition to its constructor and destructor, the crossbar switch object includes the following 
methods: 

 void addUserNode ( UserNode ) 
 UserNode findUserNode ( UserName ) 
 UserNode getFirstUserNode ( ) 
 void removeUserNode ( UserNode ) 

 void addMessageChannelNode ( ChannelNode ) 
 void addPresenceChannelNode ( ChannelNode ) 
 ChannelNode findMessageChannelNode ( ChannelName ) 
 ChannelNode findPresenceChannelNode ( UserName ) 
 ChannelNode getFirstMessageChannelNode ( ) 
 ChannelNode getFirstPresenceChannelNode ( ) 
 void removeChannelNode ( ChannelNode ) 

 void addMessageJoinNode ( UserNode, ChannelNode ) 
 JoinNode addPresenceJoinNode ( UserNode, ChannelNode ) 
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 JoinNode findMessageJoinNode ( UserNode, ChannelName ) 
 JoinNode findPresenceJoinNode ( UserName ) 
 void removeJoinNode ( JoinNode ) 

 int getUserNodeCount ( ) 
 int getMessageChannelNodeCount ( ) 
 int getPresenceChannelNodeCount ( ) 

2.1.2 Message Management 
2.1.2.1 Message Segments 

A chat message is composed of component segments that are distinguished by how they interact 
with the server. 

When a client user is connected directly to the server through a dedicated server port, the messages 
that the client user sends to the server have one or more destination segments to indicate the intended 
message recipients, and a payload segment intended for the message recipients to interpret. The 
message recipients may include other client users, the server itself, or other servers. When the client 
user has logged into the server, the client user is not required to include its own identity in the 
messages it sends to the server. The server already knows the client user’s identity because it 
assigned the client user exclusive use of a particular server port. 

When the message recipients include other client users or other servers, the recipients may need  
to know the client user’s identity to return a response or error message. The server provides the client 
user’s identity by adding a source segment to the message it receives based on the port from which it 
came. 

When a message recipient is assigned exclusive use of a particular port, the server does not need  
to include the recipient’s identity in the messages sent to the recipient. The recipient already knows 
its own identity and it would not see messages intended for any other recipient. Thus, the server can 
strip the destination segment from messages it sends to a recipient assigned to a dedicated port. 

When a message passes from server to server on its way to its final recipient, the source segment 
and the destination segment must be preserved. 

The same source-segment content is associated with all the different payload segments that the 
same client user sends to the server. The same payload-segment content is associated with all the 
different destination segments of a given message. Thus, a functional independence exists among  
the segment types. Furthermore, all three segment types can vary in length, which means that usually 
some copying of segment content would be required if the segments of a message were to be 
concatenated into a single continuous buffer. The three segment types also differ in longevity. The 
server generates the source segment content and keeps it as long as the client user remains logged 
into the server. The payload segment content exists as long as at least one output queue holds or is 
currently transmitting it. The destination segment content is no longer needed when the message 
enters the respective output queue of a dedicated port. For all these reasons, the source, payload, and 
destination segments of a message should be maintained in separate message buffers, as illustrated  
in Figure 3. 
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Figure 3. Segments of messages held in separate buffers during transactions. 

A message sent from a source user to a local-destination user may specify a channel from among  
a set of possible channels. Whereas the destination user knows its own user-specified identity, 
typically, the identity of the channel that the source user used is unknown until it has received the 
message from the source user. The server is not required to send the destination user its own user 
identity, but it must send it the specified channel identity. Therefore, the user identity is part of the 
destination segment, which can be discarded, whereas the channel identity is part of the payload 
segment, which must be retained. 

In the case of a message sent to a destination user located on a remote server, the local server 
routes the message to a local-destination user it has dedicated exclusively for the connection to the 
remote server. Since the remote server typically supports many users of its own, the remote 
destination user identity must be retained in the message that the local server sends to the remote 
server. Therefore, the local server internally treats the remote-destination user identity as part of the 
payload segment. 

Unfortunately, existing chat-message protocols are not always organized into contiguous segments 
as described above. Consider, for example, the following source client-to-server XMPP message: 

<message to=’room@service/nick’ type=chat> 
 <body>Hello world!</body> 
</message> 

The “nick” identifier, embedded within the Jabber Identifier, is destination segment information. 
All the rest is payload segment information or XML structural overhead. Thus, the required sequen-
tial location of the destination segment splits the payload segment into a portion before it and  
a portion after it. The split payload segment can be implemented with a separate buffer for each 
portion. The link to the destination segment appears in the message-segment vector between the links 
to the first and last portions of the payload segment.  

Treating the entire source-client message as payload segment information may seem easier. In that 
case, the destination segment information would be transmitted to the destination client even though 
the client does not need it. The impact on message length is small because the destination segment 
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information is relatively short. Such an approach, however, fails to consider the other reason for 
buffer segments, namely, to avoid duplicating payload segment information for each destination 
client receiving the same payload content. 

Individual messages are defined by the sequence of links to the message buffers containing their 
segments. When a message is placed in a queue, its set of links must remain in the proper sequence 
and enqueue as an atomic unit, which can be accomplished by representing a message as a vector  
of message-segment links such as by using the struct iovec supported by various operating systems 
(Figure 4). 

 
Figure 4. Message as a vector of message-segment links. 

2.1.2.2  Buffer Allocation 
Each user node has an output queue of links to message buffers. By queuing links to message 

buffers rather than queuing message content, all users who will receive the same message can share 
the same buffer. Memory space and execution time are saved since message content does not require 
duplication. 

Each buffer counts the number of user links referencing the buffer. The count is incremented when 
a buffer link enters a user node output queue and decremented after the buffer content has been trans-
mitted and the link is removed subsequently from the user node output queue. The link counts of any 
pending buffers also are decremented when the user logs off or is forced off the server. The message 
content is discarded when the link count reverts to zero. 

Although operating system routines can be used to allocate and deallocate memory for individual 
message buffers, it is more efficient in most cases to push the memory of previously allocated 
message buffers that are no longer needed to a stack and to pop from that stack before allocating new 
memory when new buffers are required. Initially, and when the stack is exhausted, memory sufficient 
for a number of message buffers can be allocated in a single system call and pushed to the stack for 
current and future use. This same technique can also be used for allocating and deallocating crossbar 
switch nodes. If the processing environment already implements this functionality, the programmer  
is not required to duplicate it. 
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Message segments retained for possible subsequent reuse are called “persistent message 
segments.” The server’s message-of-the-day, for example, is a persistent message segment. They are 
kept persistent by ensuring that at least one link to their message buffer exists to keep their message-
buffer-link count greater than zero. 

Chat room and presence channels may use persistent messages to record channel state or mode 
changes. The channel typically sends a notification message of each change to the users that are 
joined to that channel, which enables users to track changes in the channels they have joined as they 
occur in near-real time. Moreover, a user usually can request the current state or mode of a channel 
explicitly. If the message content and format in both cases are the same, retaining the notification 
message beyond the initial distribution makes sense in case a user requests it subsequently. 

To help avoid potential race conditions, content of the individual message segment buffer never  
is altered after it is created. When the state or mode represented by the message content change, a 
new message segment in a new message buffer must be created. The old message buffer content is 
discarded only after all links to the old message buffer are released. 
2.1.3 Message Distribution 
2.1.3.1 User Nodes 

The way a message is sent to a user node depends on the user node type. The three types of user 
nodes are local user nodes, server user nodes, and remote user nodes. 

Each local user node supports a directly connected local client, typically a human operator,  
on a dedicated input/output port. Local user nodes support the client-server chat message protocol. 

Each server user node supports one or more remote servers accessed locally through a single 
dedicated input/output port. Server user nodes support the server–server chat message protocol. 

Each remote user node represents a single user on a remote server for which the local server  
has knowledge. Remote user nodes do not implement an input/output port. Instead, they have a link  
to the server user node assigned to the server hosting the user they represent. 
2.1.3.2 Remote Servers 

Several users joined to a channel may reside on one or more remote servers that the local server 
accesses through a single dedicated input/output port. Sending a duplicate copy of the same channel 
message to each associated remote user would be inefficient. A better approach is to send a single 
copy to the channel on the remote servers and let the remote servers distribute the message to each  
of their own users joined to that channel. 

The channel-message-link-distribution algorithm is described below. The channel sequences 
through its list of join nodes. If the join node is an invitation node, it is skipped as described previ-
ously. If the join node is associated with a local user node, the message link is given immediately  
to the local user node output queue. If the join node is associated with a remote user node, the identi-
ty of its server-user node is added, if not already present, to a list in temporary storage. After all join 
nodes have been visited, the newly constructed list of server-user nodes is sequenced. The message 
link is given to the output queue of each server user node on the list. Since each server user node  
appears only once on the list, only a single message is sent to the respective remote server. 

The chat protocol may permit the same message to be sent to multiple channels. In that case, the 
list of server user nodes is not sequenced until the join nodes for all the selected channels have been 
visited. 
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2.1.3.3 Multicast Networks 
The server applications described thus far have assumed that each local user communicates with 

the server through an independent input/output port that the server assigns solely to that respective 
user. Multicasting is an alternative approach where a group of users share the same server port. The 
users are responsible for listening to the message traffic sent from the server through the port, 
extracting the messages that apply to themselves and ignoring the rest. 

One advantage of multicasting is that when a channel distributes the same message to more than 
one user in the multicast group, the message only needs to be transmitted once. All the intended users 
simultaneously recognize the channel that the message identifies as one they are monitoring and 
simultaneously accept the associated message content. The disadvantages of multicasting are that  
(1) recognizing intended messages imposes a processing burden on all users, and (2) messages that 
no user desires may create unnecessary traffic. 

From the perspective of the local server, the algorithm to eliminate duplication of the same channel 
message sent to different users connected through a multicast port is essentially the same as that for 
different users connected through a port to the same remote server described above. What distin-
guishes the two cases is the method by which messages are distributed when they leave the local 
server. 

2.2 NETWORK CONNECTIVITY 

Human users face two problems when they use chat systems with underlying networks that suffer 
from intermittent connectivity during a chat session. 

The first problem is re-establishing network connectivity. When a chat server detects loss of 
network connectivity with a client user, it automatically logs out the client user, which prevents a 
different client user from subsequently connecting to the same port appearing to be the original client 
user. It also prevents tying up previously reserved resources for a client user who never returns. Thus, 
when a client user regains network connectivity, it must log back into the server. Ideally, the client–
user software should be designed to log back into the server automatically so that the human user 
does not need to repeat the sequence of steps required for the initial log in. 

The second problem is determining if and when messages from a client user reached one or more 
recipients. The message could be delayed or lost between the client user and its server, between 
servers, or between servers and potentially any number of recipients. The client-user software can be 
designed to indicate when sent messages are stuck in the queue waiting transmission to the server. 
This indication could be displayed to the user by changing the font of the affected message content, 
such as its color, in the client software window. The server can be designed to generate and return an 
error message retracing the path back to the original message sender when a roadblock in the path to 
the recipient is detected. 
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3. DATA COMPRESSION 

3.1 COMPRESSION TECHNIQUES 

Data compression research has a history spanning over half a century, has produced scores of 
published technical papers, and in the past decade, spawned an industry. Three fundamental 
approaches have emerged: symbol compression, sequence compression, and context compression. 
3.1.1 Symbol Compression 

Digital communication systems represent individual characters of a character set with unique 
sequences of bit values. In the ASCII character set, for example, the letters ‘A’ and ‘B’ are repre-
sented by the bit sequences ‘1000001’ and ‘1000010’, respectively. Typically, the representations  
of all the characters in the character set employ the same number of bits. In the ASCII character set, 
all characters are uniquely represented by 7 bits. 

In language text applications such as English, some characters, for example, the space character  
or the letter ‘e’, are used far more frequently than others, such as ‘X’. Symbol compression translates 
the character representations into new representations that use fewer bits for characters expected  
to occur more frequently, and consequently, more bits to cover characters expected to occur less 
frequently. 

Symbol compression is not limited to representations of text characters. It can be generalized to 
include any sequence of information elements, called symbols, and hence the designation, symbol 
compression. It can also take non-binary forms such as Morse code, which uses dots, dashes, and 
gaps. 

Huffman coding, based on the work of Shannon’s information theory, is a classic example of 
symbol compression. The number of bits in a symbol representation can vary widely. The bits 
forming the symbol representation are assigned such that they can only be interpreted in one way. 
For example, the letter ‘E’ might be coded by ‘011’. No other symbol will start with the same 
sequence of bits. The letter ‘A’, for example, might be coded as ‘1110’. 

A practical problem arises when a bit is transmitted in error. In the example above, the ‘E’ is coded 
in 3 bits, namely ‘011’, and the ‘A’ is coded in 4 bits, namely, ‘1110’. If the first bit is transmitted  
in error, not only is the character corrupted, but the number of bits in its representation, 3 or 4, is 
corrupted. Consequently, the location of the first bit for the immediately following character, and all 
subsequent characters, is also corrupted. 

Another problem with Huffman coding, as well as with other implementations of symbol 
compression, is the dependence on a priori knowledge of the expected relative frequencies  
of symbols. If the input symbols all had the same number of bits and were distributed uniformly,  
the input would expand rather than compress. 

UTF-8, commonly used for Internet text transmissions, employs symbol representations that vary 
in the number of 8-bit bytes rather than the number of individual bits. UTF-8 assumes that the vast 
majority of input symbols have 7-bit ASCII character equivalents. If the most significant bit of a 
representation byte is zero, the coded symbol is completely defined by the seven remaining least 
significant bits of the byte. Otherwise, multiple bytes define the symbol (Figure 5). 
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UTF-8 for characters with numeric values 
from 0 through 7F hex 

0 B6 B5 B4 B3 B2 B1 B0 
 

UTF-8 for characters with numeric values 
from 80 hex through 7FF hex 

1 1 0 B10 B9 B8 B7 B6 
1 0 B5 B4 B3 B2 B1 B0 

 
UTF-8 for characters with numeric value 

from 800 hex through FFFF hex 
1 1 1 0 B15 B14 B13 B12 
1 0 B11 B10 B9 B8 B7 B6 
1 0 B5 B4 B3 B2 B1 B0 

Figure 5. Example of the use of “1” and “0” as most significant bit in UTF-8. 

WBXML provides as example of non-text symbol compression that represents its binary integers  
by a sequence of bytes. The most significant bit of each byte, called the continuation bit, indicates 
whether the byte that immediately follows it is part of the same integer. Its compression is based on 
the assumption that most input integers have small positive values and hence require few bytes 
(Figure 6). 

WBXML multi-byte integer for values 
from 0 through 7F hex 

0 B6 B5 B4 B3 B2 B1 B0 
 

WBXML multi-byte integer for values 
from 80 hex through 3FFF hex 

1 B13 B12 B11 B10 B9 B8 B7 
0 B6 B5 B4 B3 B2 B1 B0 

 
WBXML multi-byte integer for values 
from 4000 hex through FFFFF hex 

1 B19 B18 B17 B10 B16 B15 B14 
1 B13 B12 B11 B10 B9 B8 B7 
0 B6 B5 B4 B3 B2 B1 B0 

Figure 6. Example of the use of “1” and “0” as most significant bit in WBXML. 

3.1.2 Sequence Compression 

Sequence compression seeks to replace sequences of symbols, rather than individual symbols,  
with representations requiring less space. Authors essentially practice this compression when they 
use commonly understood acronyms and abbreviations such as “USA” for “United States of 
America.” 

Ziv-Lempel coding, the grandfather of most modern general-purpose file compression programs, 
watches for input symbol sequences that have previously occurred, and when found, replaces the 
repeated sequence with a reference to its previous location and length. Compression results when  
the reference takes less space in the output compared to repeating the symbol sequence itself. Unlike 
symbol compression, this approach does not require a priori knowledge of relative frequencies 
specific to an application. It is suitable for all kinds of data formats. 
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The algorithm has some limitations. Short input sequences may compress poorly, or not at all, 
since they typically are not long enough to exhibit many repeated internal sequences. Long input 
sequences may compress very slowly because of the time required to search for previously 
encountered internal sequences. Subsequent research has focused on the searching problem. 

A significant breakthrough was the discovery that the letters forming individual words extracted 
from a text file could be stored and accessed efficiently using a tree structure (Figure 7). Each node 
of the tree, except for the root, specifies a letter. By traversing from a leaf node to the root one visits 
the associated letters spelling out the word in reverse order. The compressed output indicates the 
sequence of desired words by listing the references to their respective leaf nodes in the tree. During 
decompression, a first-in, last-out stack restores the letters of each word to normal order. 
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5 = ant
6 = ate

 
Figure 7. Tree structure for storing words in a text file. 

The tree can be constructed as the input sequence is read. Since the tree content consequently 
depends on the input sequence, it must be included with the compressed output for the compressed 
output to be understood. Alternatively, when most of the vocabulary that the input uses is known  
a priori, such as words in the English language, a standard tree can be employed. Since the 
compression algorithm and the decompression algorithm have access to copies of the same standard 
tree, including it with the compressed output is unnecessary. Furthermore, during decompression, the 
tree leaf node references can be mapped directly into normal letter order spellings using a lookup 
table derived from traversals of the standard tree. 

Sequence compressed output typically contains a mixture of references to previously defined 
symbol sequences and non-compressed sequences called literals. Literals are appropriate when they 
require less space than a reference to them. Literals are required when a standard tree does not 
support them. The compressed output encoding must support a mechanism to differentiate between 
inline occurrences of symbol references versus literals. 

Approximately one out of every five characters in English text is a space character. Word-oriented 
languages such as English have established rules for placing space characters between words, and  
in relationship to other punctuation marks. The space characters do not need to be represented  
in a sequence of leaf node references representing words since these rules can be used to reinsert  
the space characters during decompression. Only the space characters between words in a sequence 
of words represented as a literal must be encoded. 
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Sequence compression can be combined with the symbol compression. For example, the standard 
tree sequence compression approach can be used to generate a sequence of tree-leaf node references 
for English words. These leaf references can then be translated into coded symbols of various 
lengths, depending on the expected relative frequency of each respective English word, using symbol 
compression. 
3.1.3 Context Compression 

Context compression takes advantage of situations where the input syntax require that only certain 
symbols or symbol sequences follow given symbols or symbol sequences. 

The typewriter keyboard provides an analogy. The meaning of the character keys depends on 
whether the shift lock is on or off. Pressing the shift-lock key defines the context as uppercase or 
lowercase. By including the shift-lock key, the number of keys required to implement the typewriter 
keyboard is reduced nearly in half. The clef symbols in music notation perform a similar space-
compressing function. The shift register key on the clarinet that the left thumb actuates provides a 
dynamic analog to the typewriter keyboard example. 

An important application of context compression is XML. The syntax rules are defined by the 
XML specification and by the applicable XML schema. For example, when the schema defines the 
set of possible valid attribute and child element names that can reside within the context of a given 
parent element name, one only needs to define unique coded symbols to distinguish among those 
attribute names, child element names, the end-or-element tag, and possibly an escape for a syntax 
error. Numeric and string-type attribute names themselves define a context for the attribute values 
they specify. The combination of an enumeration-type attribute and its value, on the other hand,  
may be treated as a unit and assigned to a unique coded symbol value. 

3.2 INTERMITTENT CONNECTIONS 

Communication environments suffering from frequent disconnects and reconnects during a chat 
session present special challenges to the selection of a compression algorithm. 

Most compression algorithms, in one way or another, incorporate previously established state 
information when encoding current input. If connectivity is lost during transmission of a portion of 
the encoded stream that defines state information, everything depending on that state information 
following the lost portion is affected. Huffman coding provides one of the worst cases of the prob-
lem. As shown in a pervious section, a single bit error can corrupt everything following it. Loss of a 
single bit has the same impact as an error bit when its state information is guessed incorrectly or it is 
assumed not to exist. 

State information in a data stream is characterized by its presence, its location, and its value within 
the data stream. Mitigation of intermittent communications requires knowing whether state 
information has been lost, knowing where to look for what was lost, and knowing what was lost. 

Loss of state location can occur when the interpretation of symbols depends on their relative 
distance from other symbols. Consider, for example, a compression algorithm that replaces repeated 
subsequences with links defined by the distance back to the nearest uncompressed occurrence of the 
respective subsequence. If a portion of the data stream of unknown length is lost between the uncom-
pressed subsequence and the subsequent link referring to it, the distance defined by the link would 
point to the wrong location. Although the link still physically exists, the location of the state it 
represents, namely the uncompressed subsequence, has been lost. In general, compression algorithms 
encoding relative distances should be avoided in intermittent communication environments. 

 16



 

3.2.1 State Containment 

Intermittent communication connections are characterized by large gaps of adjacent symbols in the 
data stream. If a particular symbol is lost, the symbols adjacent to it are likely to be lost. If a particu-
lar symbol is present, the symbols adjacent to it are likely to be present. Thus, a symbol referencing 
state information that is adjacent or close is more reliable than a symbol referencing state information 
that is separated by some distance. 

State containment seeks to improve reliability by allowing a symbol to reference state information 
only from other symbols located within the bounds of a defined range. Recovery is simplified 
because states outside the defined bounds do not need to be retained and states within the defined 
bounds are in close proximity. 

The primary disadvantage of state containment is that limiting the states that can be referenced also 
limits the opportunities to compress using available states. When the defined bounds of a single chat 
message define the range, for example, few if any repeated subsequences provide states for compres-
sion. 
3.2.2 State Synchronization 

Compression algorithms where the meaning of a symbol depends on the state of one or more 
previous symbols imply the existence of an underlying state machine. When input data stream 
reception is restored after the possible loss of symbols, the current state of the state machine must be 
re-established. There is no problem if all the lost symbols can be recovered since the state machine 
can sequence through them. But if this is not possible or convenient, or if symbols may be in error, 
some other mechanism is needed to synchronize the state machine with the input data stream. 

Synchronization can be re-established by including symbols, called synchronization symbols, 
within the input data stream. Synchronization symbols have both unique codes and simultaneously 
do not depend on the state of any previous symbols. When a synchronization symbol is encountered, 
the state machine goes immediately to the state associated with that synchronization symbol regard-
less of what preceded. Everything that follows is synchronized as long as it does not reference 
anything prior to the synchronization symbol. State containment should use a synchronization 
symbol at the beginning of the containment range. They can, of course, be used elsewhere  
as well. 

Synchronization symbols have other uses besides synchronization. They can have additional 
meanings as long as they do not depend on other symbols. But because their codes must be unique, 
the number of codes assigned to synchronization symbols should be restricted to things that are likely 
to occur frequently. 
3.2.3 State Codebook 

State containment, described above, applies to compression that uses links in the communications 
data stream to prior state information in the same communications data stream. The codebook 
approach, on the other hand, uses links to state information maintained in an independent table called 
the codebook. The sender and the receiver have a copy of the codebook. Only the links need to be 
sent within the communications data stream because both the sender and the receiver already know 
what each link represents from their respective local copy of the codebook. 

An obvious limitation of the codebook approach is that it can only compress what is already 
predefined in the codebook. Chat text, unlike literary text, tends to be spontaneous. Sloppy spelling 
and neologisms are unsupported. Since it is unlikely that the codebook will cover everything, the 
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codebook approach must provide a means of inserting segments of uncompressed text, called literals, 
or perhaps text compressed by some other means. 

The codebook approach is particularly effective in compressing XML element and attribute tags, 
and attribute enumeration values such as encountered in the XMPP. XML namespace definition 
attributes typically contain a large number of characters. Replacing a namespace attribute tag and 
value with a single codebook symbol can dramatically reduce the size of an XML message. 

3.3 SMALL TEXT COMPRESSION 

The previous section described the three fundamental techniques that can be used, individually or 
in combination, to compress data. This section applies these techniques to create a new compression 
algorithm called Small Text Compression. 

Various sequence compression algorithms are available for compressing the size of data files. 
These algorithms compress by searching for repeated subsequences within the input sequence and 
reorganizing the input sequence so that these subsequences are recorded only once. They work best 
when the input sequence is large and contains repeated subsequences. Their performance on short 
sequences such as text messages encountered in chat applications is poor. As is explained below, 
they usually expand rather than compress the size of short text sequence. Small Text Compression  
is tailored to compress short text sequences, filling the gap left by traditional file compression  
algorithms. 
3.3.1 Compression Design 

The Small Text Compression algorithm exploits the observation that most of the characters in a 
text message come from a limited set of alphabetic characters. Characters expected frequently are 
coded with fewer bits than those expected rarely. The algorithm also exploits the observation that 
uppercase and lowercase characters are rarely randomly intermixed. If a given character is lowercase, 
for example, it is unlikely that the immediately following character in the sequence will be uppercase 
or a decimal digit. 

The set of possible input text characters is partitioned into character subsets. Uppercase characters 
are in one subset, lowercase characters are in another, and decimal digits, punctuation marks, and 
symbols are in a third. A fourth character set can handle characters rarely expected. Special non-
printable characters, called state characters, are inserted into the compressed text sequence to indicate 
transitions from one subset to another. The space, end-of-line, and end-of-message characters are 
available in all subsets. Compression is normally achieved because fewer bit positions are needed to 
represent characters from a subset than to represent character from the full set, and also because more 
bit positions are saved than lost by the insertion of occasional state characters. 

A typewriter-style keyboard uses a similar approach. As explained in Section 3.1.3, the keyboard 
does not have separate keys for uppercase and lowercase versions of the same letter. The shift key 
determines the case selected. When the algorithm inserts a state character, it is like the typist setting 
or clearing the keyboard shift lock. The shift lock affects neither the space bar or carriage return. 
Similarly, the state character affects neither the compressed space character or end-of-line characters. 

The uppercase and lowercase character subsets must support 26 letters of the alphabet, the space 
character, the end-of-line character, and the end-of-message character, for a total of 29 possible 
characters. These characters can be represented uniquely with 5 bits. The end-of-message character  
is included to mark the end of a sequence of 5-bit compressed characters because often the end of the 
sequence does not align with the string of 8-bit bytes used to store it. Table 2 lists the compressed 
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character code assignments. Each column specifies a subset. Binary numbers between “<” and “>” 
symbols represent state characters. 

Table 2. Compressed 5-bit character codes. 
27 28 29 30 Subset 

Character <11011> <11100> <11101> <11110> 
0 00000 End-of-Message 
1 00001 A a 1 !
2 00010 B b 2 #
3 00011 C c 3 $
4 00100 D d 4 %
5 00101 E e 5 &
6 00110 F f 6 @
7 00111 G g 7  
8 01000 H h 8  
9 01001 I i 9  
10 01010 J j 0  
11 01011 K k +  
12 01100 L l -  
13 01101 M m *  
14 01110 N n /  
15 01111 O o =  
16 10000 P p < 000xxxxx
17 10001 Q q > 001xxxxx
18 10010 R r . 010xxxxx
19 10011 S s , 011xxxxx
20 10100 TT t ; 100xxxxx
21 10101 U u : 101xxxxx
22 10110 V v ? 110xxxxx
23 10111 W w ( 111xxxxx
24 11000 X x )  
25 11001 Y y ’  
26 11010 Z z ”  
27 11011 space <11011> <11011> <11011>
28 11100 <11100> space <11100> <11100>
29 11101 <11101> <11101> space <11101>
30 11110 <11110> <11110> <11110> space
31 11111 End-of-Line 

Since 5 bits provides 32 possible codes that are listed in Table 2, the remaining three codes are 
available to represent state characters. A state character does not need to be inserted into a 
compressed sequence that is already in the desired subset. Only state characters that change the 
subset need to be included in the current subset. Thus, all four subsets are supported, namely, the 
current subset, and transition to any of three other subsets using the three remaining characters of the 
current subset as state characters. 

The first compressed character of the sequence must be a state character introducing one  
of the four respective subsets, an end-of-line character, or an end-of-message character. The end- 
of-message character indicates a null message. The algorithm could have been designed so that an 
initial subset is assumed by default, which would make the initial state character unnecessary when 
the default subset is applicable. The alternative of requiring that the subset be coded explicitly was 
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selected so that the remaining 26 possible first 5-bit compressed character codes would be available 
for future expansion. 

The Small Text Compression algorithm supports all the 256 possible 8-bit input characters. Table 
3 shows an example. The various subsets provide 5-bit codes for the most likely encountered 8-bit 
input characters. All 8-bit input characters can be coded as a sequence of two 5-bit compressed 
characters. The first 5-bit compressed character specifies the three most significant bits of the 8-bit 
input character. The second 5-bit compressed character is identical to the five least significant bits  
of the 8-bit input character. The sequence of two 5-bit compressed characters is called a literal. 
Although every 8-bit input character can be represented as a literal, it makes no sense to use a literal 
when a subset includes a single 5-bit character code for the same 8-bit input character. 

Table 3. Compression example. 

27 8 28 5 12 12 15 28 23 15 18 12 4 30 1 0 

UC H LC e l l o  w o r l d SC ! EM 

UC = Uppercase, LC = Lowercase, SC = Symbol, EM = End-Of-Message 

3.3.2 Compression Implementation 

The compression algorithm requires that the software implementation pack 5-bit compressed 
characters into 8-bit bytes. Since “8” is not divisible by “5,” a 5-bit compressed character could be 
aligned on any of eight possible bit positions within the current 8-bit byte, and in five cases, spill 
over into the next sequential 8-bit byte. Each of the eight cases involves different instructions, which 
may include shifting, masking, and outputting a completed byte. This compression can all be imple-
mented by creating a software state machine with eight states, one for each respective bit position 
alignment case. A “switch” statement can be used to select the instructions needed for each respec-
tive case and to specify the next case in the sequence. Provision must also be made for flushing the 
last 8-bit byte when the 5-bit compressed character sequence does not end on an 8-bit byte boundary. 

Converting a compressed sequence back into its original uncompressed form requires the software 
implementation to unpack 5-bit compressed characters from 8-bit bytes. Another software state 
machine with eight states, one state for each respective bit alignment case, can also be used here. 
Provision may also be needed for an unexpected end-of-file or other terminator exception prior to 
receiving the final end-of-message 5-bit compressed character. 
3.3.3 Synchronization Design 

Some applications may need to tap into a stream of transmitted messages at an arbitrary point, 
which requires the message receiver to locate the bit alignment of 5-bit characters in the received bit 
steam and identify the current character subset. It is assumed that the application is interested only  
in complete messages and that any received bits prior to the beginning of the first complete message 
can be ignored. 

The end-of-message character is represented by five “0” bits. But if the 5-bit character alignment 
is unknown, one cannot simply search the message stream bit-by-bit for the first sequence of five 
adjacent “0” bits. Many combinations of adjacent 5-bit characters have the concatenation of the least 
significant bits of the first character followed by the most significant bits of the next character 
encompass a sequence of five or more adjacent “0” bits. Encoding the sequence “PA”, for example, 
produces the sequence, “10000 00001.” It contains eight adjacent “0” bits. The eight adjacent  
“0” bits encompass four possible sequences of five adjacent “0” bits. None of these four, however, 
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were intended to represent an end-of-message 5-bit character, even though they each consist of five 
adjacent “0” bits. 

The end-of-message character is the only 5-bit character with five “0” bits. All other 5-bit 
characters have four or less “0” bits. Thus, the only way that nine adjacent “0” bits could appear  
in sequence is when an end-of-message character exists somewhere within the sequence of nine  
“0” bits. This sequence gets one closer to the goal of finding the end of the current message,  
but still leaves the bit alignment of 5-bit characters unresolved. 

Enforcing two rules can solve the problem. The first rule is that all messages supporting synchroni-
zation must end with a sequence of at least nine adjacent “0” bits to avoid confusion with adjacent  
5-bit sequences that form eight adjacent “0” bits like the “PA” example above. For convenience, 
implementations may pad the sequence with “0” bits to the next byte boundary, although this is not  
a requirement as long as the stream contains at least nine adjacent “0” bits. The second rule is that 
the next message must begin with a state character. The most significant bit of all state characters  
is a “1” bit. The receiver simultaneously synchronizes with the 5-bit character alignment and the 
beginning of a new message by searching for the first “1” bit after a sequence of at least nine 
adjacent “0” bits. 

The second rule could be relaxed slightly to allow a new message to begin with any 5-bit character 
whose most significant bit is a “1” bit. In that case, messages that begin with a non-state character 
would need to assume an initial default character subset. The advantage of requiring that the first  
5-bit character be a small text compression state character is that it leaves room for other first 
character encodings to introduce alternative message formats.  
3.3.4 Synchronization Implementation 

The 5-bit character synchronizer state machine is responsible for locating the bit position boundary 
between Small Text Compression 5-bit characters within a received message byte stream by locating 
the first “1” bit after a sequence of nine or more adjacent “0” bits. The bit position of the located  
“1” bit is then used to initialize the 5-bit character reader state machine described previously. 

It is assumed that message byte stream bytes are received most significant bit first. When detected, 
a sequence of at least nine adjacent “0” bits followed by a “1” bit spans either two, or in one case, 
three adjacent bytes. The three-byte case occurs when the first received byte has a “0” in its least 
significant bit position, the next byte has a “0” in all eight bit positions, and the last received byte  
has a “1” in its most significant bit position. 

The synchronization state machine contains a 3-byte shift register to store the currently received 
byte, the previously received byte, and the one received before the previously received byte. The 
shift register is clocked each time a new byte is received. 

The state machine checks each newly received byte to determine the number of adjacent most 
significant “0” bits it contains. The check can be performed by a loop that counts “0” bits starting  
at the most significant bit and proceeding until reaching a “1” bit or running out of bit positions.  
A faster approach is to use a binary search using bit-position masks or equivalent arithmetic compari-
sons to constants. The first test checks for at least four adjacent most significant “0” bits, and 
depending on the result, the next test checks for at least six or at least two adjacent most significant 
“0” bits, and so on. 
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If the most recently received byte contains only “0” bits, nothing further can be done since the first 
“1” bit following the “0” bits has not yet been located. Otherwise, the number of adjacent most 
significant “0” bits in the current byte indicates what must be tested in the previous bytes to obtain 
an overall sequence across the byte boundaries of at least nine adjacent “0” bits before the “1” bit. 
The preceding binary search to determine the number of adjacent most significant “0” bits in the 
current byte automatically leads to separate locations in the software code for each case. To branch 
on a switch statement based on the number “0” bits found in the current byte is not necessary. 

Before receiving the first byte from the message byte stream, the least significant bit of the current 
shift register byte is set to “1.” This setting prevents the false detection of nine adjacent 0 bits when 
only the first byte is shifted into the shift register. 

When the synchronization sequence of bits has been detected, control is transferred to the 5-bit 
character reader state machine. The 5-bit character-reader state is initialized based on the bit position 
of the most significant “1” bit in the current byte. 

Both state machines can use the same shift register. Note, however, that the clocking of the shift 
register differs. The 5-bit character-synchronizer state machine clocks the shift register each time a 
new byte becomes available from the message byte stream. The 5-bit character-reader state machine 
clocks the shift register when the application requests a new 5-bit character and that character crosses 
a byte boundary. The 5-bit character reader state machine also only needs two of the shift register 
bytes. See Tables 4 and 5. 

A Java™ language implementation of the 5-bit character synchronizer and reader algorithms can be 
extended from the java.io.FilterInputStream class. Although this class supports mark and reset 
methods, their intended semantics are inappropriate for synchronization. Since not all input applica-
tions require synchronization, a new method, called sync, should be defined for that purpose. 

Table 4. 5-bit character synchronizer state machine. 
When This Bit Sequence Detected 

Previous-Previous Byte Previous Byte Current Byte State 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

8        0 0 0 0 0 0 0 0 0 1        
7 0 0 0 0 0 0 0 0 0 1       
6  0 0 0 0 0 0 0 0 0 1      
5   0 0 0 0 0 0 0 0 0 1     
4    0 0 0 0 0 0 0 0 0 1    
3     0 0 0 0 0 0 0 0 0 1   
2      0 0 0 0 0 0 0 0 0 1  
1 

Not Used 

      0 0 0 0 0 0 0 0 0 1 

State 0 is initial state if no synchronization required. 
State 8 is not required if no synchronization required. 
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Table 5. 5-bit character reader state machine. 
Next State Construct 5-Bit Character from Bits 

Previous Byte Current Byte Current 
State 

Shift 
Required Got 

EOF 
No 

EOF 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
8 3 ● ● ● ● ●    
7 2  ● ● ● ● ●   
6 1   ● ● ● ● ●  
5 

No - 

0 

Not Used 

   ● ● ● ● ●
4 7     ● ● ● ● ●        
3 6      ● ● ● ● ●       
2 5       ● ● ● ● ●      
1 4        ● ● ● ● ●     
0 

Yes Exit 

3 Not Used ● ● ● ● ●    

 
3.3.5 Performance 

The algorithm typically replaces the vast majority of 8-bit input text characters with 5-bit 
compressed characters. Consequently, compression may not exceed a ratio of 8 to 5. In practice, 
however, the compression is less because of the insertion of state characters and possibly padding  
to align with an 8-bit byte environment. For English text, the size of the compressed output is 
typically two-thirds the size of the original text input. 

The Small Text Compression algorithm is intended only for short text sequences. The test results 
above provide a general idea of what constitutes “short” for English text. The Small Text Compres-
sion algorithm is vastly superior to the gzip and zlib algorithms for a text sequence less than  
100 characters. In that range, the gzip algorithm expands rather than compresses. The algorithms  
are competitive in the 200- to 300-character range. Remember, however, that the results will vary 
with the nature of the sequence under test. See Figure 8 for a comparison of compression algorithms. 
Figure 9 graphs the effect of zlib level. 
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Figure 8. Compression algorithm comparison. 
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Figure 9. Effect of zlib. 

3.3.6 Limitations 

Some short text applications may not benefit from compression. In a disk storage application,  
for example, files usually are assigned exclusive use of fixed-size disk data blocks. No disk space is 
gained by compressing a short file whose uncompressed size already fits entirely within a single-disk 
data block. From the perspective of the disk, both the compressed and the uncompressed forms 
require the same space regardless of the extent to which the disk data block is filled internally. 

Compression of short text does benefit network message throughput. Even here, however, some 
limitations arise in the underlying network protocol layers that cannot be compressed and still remain 
compatible. The “Hello world!” example above illustrates the problem. It requires 16 5-bit characters 
for a total of 80 bits. The 80 bits fit exactly into 10 8-bit bytes. Without compression, the same 
message requires 13 8-bit bytes since it contains 12 text characters and a terminator. Compression 
has reduced the message size by 3/13 or approximately 23 percent. But when we add the minimum 
20 bytes for a TCP envelop and the minimum 20 more bytes for an IPv4 envelop, the results are not 
so impressive. The uncompressed message is now 53 bytes long and the compressed version is now 
50 bytes long. Compression of the data content of the message has reduced the overall TCP/IP 
message size by 3/53, or approximately 5.7 percent. The percentage improvement is even lower for 
network bandwidth because of the network hardware requirement for time to separate and synchro-
nize messages from different sources. 

These observations may explain why traditional compression algorithm research on compressing 
short sequences has received little attention. The fact that they are already short tends to imply that 
compression is unnecessary. 
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3.4 XML-SCHEMA-BASED COMPRESSION  

XML messages tend to be verbose in comparison to equivalent fixed message formats for several 
reasons. XML messages use a hierarchy of element tags rather than a single identifier to specify 
message type and function. Element tags appear in fully spelled-out pairs to delimit their scope rather 
than relying on the relative position of user content in the message. Attributes are specified by name 
rather than relying on their relative position as well. Finally, Universal Resource Identifiers (URIs), 
which require a large number of characters, may be embedded rather than assuming predefined 
formats. 

On the other hand, XML has the advantage of extensibility and universality. Elements of new 
namespaces can be encapsulated within the scope of old namespace elements, which provides  
a flexible and well-defined way to extend the definable message syntax. XML also provides  
a universal way to handle message syntax in general. XML promotes software reuse by avoiding 
unique parser implementations. It encourages the creation and use of proven development tools and 
object libraries such as editors, syntax event libraries, marshaling interfaces, and database interfaces  
to serve a wide array of message applications in a uniform manner. 

This section presents an XML-compatible method to gain the benefits of the brevity of fixed 
message formats and the extensibility and universality of XML message formats through XML 
message compression. 
3.4.1 Name Tag Translation 

The valid syntax for XML messages can be defined using XML schemas. The schemas, which are 
written in XML format, specify the target message element and attribute tag names, their hierarchical 
relationship to one another, the restrictions on their combination and sequence, and the syntactic 
restrictions on the user content they encapsulate or identify. 

In his master’s thesis from the Naval Postgraduate School, Ekrem Serin presents a compression 
method consisting of replacing each element begin, element end, and attribute tag with unique 
integers. A translation table is generated easily from the schemas by scanning them for <element 
name=…> and <attribute name=…> schema elements. When the identical schemas and the identical 
scanning algorithm are available to the transmitter and receiver of the message, they do not need  
to be included in the translation table as part of the message. 

Because XML elements are nested, a stack can represent the nested relationships. A sequential 
encounter of a child element begin name tag pushes the parent element name unto the stack.  
A sequential encounter of a child element end name tag pops the parent element name from the stack. 
The child element end name tag does not need to specify the parent element to which it returns 
control because the parent’s identity is available from the stack. 

This process suggests a possible improvement to the assignment of unique integers to tags. The 
message transmitter encodes the element begin name tags using unique integers as described above. 
Assuming that the message receiver has a stack, the message transmitter can encode all element end 
name tags by a single unique integer. Element begin name tags, for example, could be differentiated 
by unique integers greater than one, and the integer one could represent all element end name tags. 
The integer assigned to represent all element end name tags, one in this case, is called the “common 
end tag integer.” 

Since unique integers no longer are required for each possible element end name tag, the approach 
reduces the number of required unique integer values for element names by half plus the one extra 
for the common end tag integer. Element name tags must be distinguished from attribute name tags. 
Consequently, the inclusion of required additional unique name tag integers for attribute name tags 
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reduces the overall savings to less than half. The savings are, at best, 1 bit in the name tag integer 
value, which is hardly worth the trouble. However, as is explained below, the approach can be 
combined with another approach to reduce significantly the number of bits required. 

Attributes have a value and a value type. The number of bits required to transmit the attribute 
value is determined implicitly from the value type, such as “short” integers that imply 16 bits,  
or explicitly from the coding of the value itself, such as by a character string delimiter. Thus,  
the common end tag integer is not needed to terminate attributes. 

Element attributes can be viewed hierarchically as children of the element that they describe. 
Attributes do not, however, have children of their own. Since attributes would never be the parent  
to something else, their attribute name tag integers would not be stacked. 
3.4.2 Contextual Name Tag Translation 

Fortunately, more can be done. The schema defines the attributes and elements that are permitted 
to exist as children of each parent element. Although the total number of attributes and elements that 
a schema defines may be quite large, the number of attributes and child elements for each parent 
element individually is generally quite small. Additional compression potential may be obtained by 
limiting the scope of name tag integer uniqueness to the scope of the respective parent element. 

The meaning of an attribute or element name tag integer depends on its parent element. But  
since the parent element also is represented by a name tag integer, the meaning of the parent element 
name tag integer depends on its own parent, the grandparent of the original element. The chain 
continues until it reaches the root element. In general, the meaning of a given name tag integer 
depends on its entire element ancestry. 

The stack maintains the name tag integer element ancestry. The ancestry is defined by all the 
elements that are on the stack and by their order on the stack. One could determine the meaning  
of a name tag integer by examining all the elements on the stack in sequence, starting with the 
element pushed first, which is located on the bottom of the stack. A more practical approach, 
however, predefines a unique integer for each possible valid element ancestry that the stack can 
capture so that only a single integer needs examination. By pushing to the stack element ancestry 
integers rather than name tag integers, only the top of the stack needs examination to determine  
the entire state of the stack. 

The element ancestry integers can be enumerated by traversing all the valid paths through the 
XML schema, starting with the integer one. The integer zero is reserved for the root element that  
has no ancestors. Assuming that the enumeration algorithm and the schema remain the same, the 
enumeration needs to be established only once. The number of bits required to represent element 
ancestry integers is not an issue because they are never transmitted in the message. 

The element ancestry integer on the top of the stack indexes an element ancestry lookup table. 
Each entry in this table points to a respective name tag lookup table. The name tag lookup table is 
indexed by the name tag integer under consideration. The name tag lookup table entries define the 
associated name tag character string, the value type or no value present, and the element ancestry 
integer to be pushed to the stack if the name tag integer is for a child element. Since character strings 
may vary significantly in length, the table employs pointers rather than character string literals to 
save space. 
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In addition to the field pointing to the respective name tag lookup table, the element ancestry 
lookup table entries also contain a field pointing to the respective element name character string.  
As is explained below, the message decoding algorithm needs this field to identify the current 
element name when decoding common end tag integers. It is also handy for manually interpreting 
source code listings and when the stack state is displayed for debugging. 
3.4.2.1 Coding Algorithm 

The message transmitter compresses the XML input name tags as follows.  

First it determines from the XML syntax whether the next sequential input name tag is an element 
begin, attribute, or element end name tag. 

When the name tag to be coded is an element begin or attribute name tag, the transmitter searches 
the current name tag lookup table for the name tag character string that matches the element or 
attribute name tag. A constant offset is then added to the name tag lookup table entry index where the 
name tag was found and the sum is transmitted as the name tag integer. The constant offset is neces-
sary to skip over the name tag integers that have a global meaning such as the common end tag 
integer. 

If the name tag was for an attribute, the attribute value would be coded using the value type 
indicated by the name tag lookup table entry as a guide on how it should be coded. If, on the other 
hand, the name tag was for a child element, the element ancestry integer from the name tag lookup 
table entry would be pushed to the stack. The new element ancestry integer now on the top of the 
stack switches the current name tag lookup table to the one associated with the child element context 
for use by the name tag integers that follow. 

When the name tag to be coded is an element end name tag, the common end tag integer is trans-
mitted and the stack is popped. The stack pop uncovers the previous element ancestry integer, which, 
in turn, restores the parent name tag lookup table as the current name tag lookup table for use by the 
name tag integers that follow. 

XML syntax permits an element with no child elements to be presented with a single name tag 
terminated by a slash character. XML parsers usually convert this element into two separate events, 
one to indicate the beginning of the element and another to indicate the end of the element. The name 
tag integer coding should follow this same pattern. 
3.4.2.2 Decoding Algorithm 

The message receiver decompresses the name tag integers as follows. 

When the received name tag integer is greater than or equal to the constant offset used to skip over 
name tag integers with global meanings such as the common end tag integer, the constant offset  
is subtracted from the received name tag integer and the result is used to index into the current name 
tag lookup table. The name tag character string at that entry is obtained and output with the appropri-
ate XML punctuation. 

If the name tag was for an attribute, the attribute value would be decoded back into a character 
string, if not one already, using the value type indicated by the name tag lookup table entry as a 
guide. 

If, on the other hand, the name tag were for a child element, the element ancestry integer from the 
name tag lookup table entry would be pushed to the stack. The new element ancestry integer now on 
the top of the stack switches the current name tag lookup table to the one associated with the child 
element context for use by the name tag integers that follow. 
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When the received name tag integer is the common end name tag integer, the receiver obtains the 
end element name tag character string from the element ancestry lookup table at the index specified 
by the element ancestry integer at the top of the stack. It outputs the element end name tag character 
string with appropriate XML punctuation and then pops the stack. 

Since the XML syntax places attributes before the “>” character defining the element begin  
to which they apply, the message receiver must delay output of the “>” character until detecting  
that all attributes of the current element begin have been received. This delay can be implemented  
by a local flag to indicate that the output of the “>” character is pending. The flag is set after an 
element begin name tag integer has been processed and cleared after a non-attribute name tag integer 
has been processed. It is tested when a non-attribute name tag integer is detected. 
3.4.3 State Synchronization 

So far, it has been assumed that the receiver’s stack is empty prior to the arrival of the root name 
tag of a new message. As stated above, a stack removes redundant information from the message. 
The following discussion considers the more general case in which the receiver connects to a 
message stream already in progress at an arbitrary point in the stream rather than at the beginning of 
a message. For the receiver to interpret properly the message stream content, it must synchronize its 
stack with the message stream transmitter. 

When no stack is used and every element begin, attribute, and element end name tag is assigned  
a globally unique integer, the receiver knows immediately the name tag being received without 
depending on neighboring name tag integers. When a stack is introduced so that all element end 
name tags can use the same common end tag integer, the receiver skips any initial common end tag 
integers because their meanings are ambiguous. 

Synchronization is more complex for the ancestry-dependent name tag integer case. Here, the 
interpretation of each name tag integer depends on its element ancestry, except for the root name  
tag integer, which has no ancestors. The inability to distinguish between root and non-root name  
tag integers makes matters even worse. A simple means of state containment is needed. 

In practice, synchronization on any arbitrary name tag is seldom necessary. Synchronization in a 
message\stream application is normally required only at the message or “stanza” boundaries because 
incomplete messages have little value out of context and are often discarded. Typically, one or two 
name tags delineate these synchronization boundaries. The boundary name tags also tend to occur 
relatively infrequently in the message stream sequence compared to non-boundary name tags 
collectively. 

The solution is to assign globally unique name tag integers to boundary name tags and to treat all 
other name tags in the ancestry-dependent manner described above. For example, the common end 
tag integer could be assigned the value zero as before, the message boundary name tag integer could 
be assigned the value one, and all the remaining ancestry-dependent name tag integers could be 
assigned values greater than or equal to two. The common offset used to relate name tag integers  
to name tag lookup table indices described above would have a value of two. 
3.4.3.1 Name Tag Integer Atomicity 

The synchronization approach assumes that the receiver can recognize the name tag integers as 
properly atomic. To illustrate the concern, assume that name tag integers in the message stream are 
represented by 2 bytes. The receiver may regain reception on either the first or second byte of an 
integer. If it has no means of knowing from which byte reception has been recovered, it has  
a 50-percent chance of assuming the wrong byte. XML name tags avoid this problem because their 

 29



 

text is enclosed between the “<” and “>” characters, which clearly delineate where the name tag 
begins and ends. 

The TCP network protocol provides atomicity at the byte level. It does not guarantee that 2-byte 
alignment, or any multibyte alignment for that matter, will be preserved. It simply provides  
a “stream” of bytes. A simple solution is to require all name tag integers to fit within a single byte. 
The ancestry-dependent name tag integer approach greatly helps by keeping the range of name tag-
integer values quite small. 

Occasionally, name tag integers will not fit in a single byte. One solution is to replace the parent 
name tag integer with a set of parent name tag integers that all represent the same parent name tag. 
The various child name tags are then distributed among the members of the set of parent name tag 
integers. Unfortunately, the optimum distribution is not always clear. Furthermore, when a root 
name-tag integer is too big, a pseudo name tag integer must be created to act as its parent. These 
factors make this approach complex and undesirable. 

A better approach is to use a binary encoding that distinguishes among the bytes comprising the 
name tag integer. This approach has the advantage that extra bytes are needed when only the most 
significant bytes represent non-zero bits of the integer being encoded. Both Unicode Transformation 
Format (UTF-8) and WBXML use this approach. They set the most significant bit of a byte to zero 
when the seven remaining bits of the byte represent the least significant bits of the integer. 
Otherwise, the most significant bit is set to one. Assuming that bytes are received in a big-endian 
sequence, as is the case for the TCP-network protocol, reception of a byte with its most significant bit 
set to zero could represent fully a single-byte integer, or it could be the least significant byte of a 
multibyte integer. The encoding is ambiguous. In either case, however, it is the last byte of that 
integer. The second received byte, in the context of the first received byte, is defined completely 
because it begins a new integer. 
3.4.3.2 Message Atomicity 

A software tool should be designed to generate the element ancestry lookup table and all the 
associated name tag lookup tables from an input XML schema file. Currently, the XML schema 
specification does not provide a means of specifying that a name tag indicates a synchronization 
boundary. The tool needs this information so it can assign the selected name tag a globally unique 
integer. Thus, that information, in addition to the XML schema file, must be included as an input to 
the tool. 
3.4.4 State Syntax Checking 

The transmitter can detect syntax errors when an element begin name tag or attribute name tag 
appears that is not recognized during the search of valid character strings in the current name tag 
table. This form of syntax error checking is a natural result of the search process and has no impact 
on the table structure. 

The XML schema specifies not only what child elements and attributes are permitted for each 
parent elements, but also how the child elements may be sequenced and how many occurrences of 
each are permitted. Due to the potentially large number of valid permutations, adding syntax error 
checking for these additional restrictions requires a more complex state machine with potentially 
many more states. Its design is beyond the scope of this project. It is mentioned only to note that  
the XML name tag compression described here could be integrated into it. 
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3.4.5 User Data 

The message receiver needs the ability to distinguish between a numeric value that represents  
a name tag integer and a numeric value that represents user data. Three approaches are considered 
below. 

The first approach differentiates between name tags and user data by assigning them different 
binary representations. XML encodes user data using printable character strings. The binary 
representation of the non-printable characters can function as name tag integers. The approach is 
simple to implement and does not suffer from the synchronization problems of other approaches.  
Its primary drawback is that all user data are retained as a character string without compression. 

The second approach is to use knowledge of the length and location of user data derived from the 
XML schema element type definitions or, in the case of variable-length data, specified directly in the 
message before its presentation. This approach allows numeric data to be encoded in binary format 
rather than in an equivalent character string format, which improves compression of numeric data 
significantly. The receiver differentiates between name tag integers and integers representing user 
data, not by the integer values, but by where the integers are located in the message. The implemen-
tation is considerably more complex than the approach described above because processing of user 
data types must be supported. The approach is also unsuitable for applications that involve attempts 
to access a message stream at an arbitrary point and synchronize at the first received message 
boundary. Knowledge of the length and location of user data requires prior synchronization to some 
reference point. Otherwise, the representation of user data can be mistaken for the same representa-
tion encoding a synchronization boundary. 

The third approach is to use escape sequences. An escape sequence translates an input user data 
character that conflicts into a sequence of characters that do not conflict. In the C, C++, C#, and 
Java™ programming languages, for example, a quotation mark terminates a string literal. If the string 
itself contains a quotation mark, the quotation mark must be preceded by a backslash character so 
that the string is not terminated prematurely. The backslash character initiates the escape sequence. 
XML also uses escape sequences. For example, the three characters “&gt” replaces the “>” character 
when the “>” character is not terminating an XML element name tag. For the compression approach 
described here, the escape character can be implemented using another globally unique integer. 

3.5 SMALL TEXT XML COMPRESSION 

The small text compression encoding described above compresses 8-bit ASCII text to approxi-
mately two-thirds of its original size by replacing nearly all of its most frequently expected characters 
with 5-bit characters. Four character subsets are defined. Each subset reserves three of its 5-bit 
character codes to allow transition to one of the other subsets. The first two subsets implement the  
26 uppercase and 26 lowercase alphabetic characters, respectively. The other two subsets implement 
the numeric digits, punctuation marks, and an escape mechanism to handle any 8-bit ASCII character 
that may not be covered explicitly in one of the subsets. 
3.5.1 Name Tag Integer Subset 

To combine the benefits of the small text compression encoding with the name tag integer 
compression algorithm described above, two requirements must be satisfied efficiently. First,  
a means of representing name tag integers is needed in the 5-bit character framework. Second,  
they must be distinguished from application text, which also may contain integers. 

Since name tag integers are so prominent, the two non-alphabetic 5-bit character subsets should  
be redefined so that one of the subsets is dedicated exclusively to name tag integers. The other subset 

 31



 

implements the numeric digits, the most important punctuation marks, and the escape sequence for 
arbitrary 8-bit ASCII characters. By assigning the name tag integers their own 5-bit character subset, 
they can be distinguished from other text. Furthermore, the 5-bit character introducing the name tag 
integer subset can act as a delimiter to terminate other text that precedes it. 
3.5.2 Name Tag Integer Separation  

The next issue is how to encode name tag integers within their 5-bit character subset. Three 
requirements apply here. First, integers of any size need to be supported. Name tag integers generally 
are expected to have small numeric values. No artificial limits should be imposed, however, that 
would limit the universality of the approach. Second, small numeric values, being more frequent, 
should require fewer 5-bit characters to encode, compared to larger numeric values. Finally, since 
name tag integers often occur one immediately after another, a means is needed to determine where 
in the sequence of 5-bit characters one name tag integer ends and the adjacent one begins. 

All the subsets implement the space character with the same 5-bit character code as the one that 
other subsets use to introduce the subset. This 5-bit character’s double duty is possible because a 
subset does not need to be introduced when it is already in current use in that subset. One approach 
uses the space character within the name tag integer subset as the separator between adjacent name 
tag integers. 

Another approach uses a scheme similar to what 8-bit UTF-8 implements for multibyte characters. 
It assigns a bit within each byte to indicate whether the next byte is part of the same character. To 
implement this approach in a 5-bit character subset, each name tag integer digit value would have 
two 5-bit character representations, one indicating that an additional digit follows that is part of the 
same name tag integer, and the other indicating that it is the  
last digit of the name tag integer. No additional 5-bit character is needed to separate name tag 
integers because the 5-bit character for the last digit indicates the end of the previous name tag 
integer. 

By far the most frequently occurring name tag integer is the common end tag integer used to 
terminate XML elements. The first approach requires every common end tag integer 5-bit character 
to be preceded by another 5-bit character to introduce the name tag integer subset or to separate the 
common end tag integer 5-bit character from another name tag integer. In both cases, the preceding 
5-bit character has the same code value. Only its interpretation differs. 

The second approach does not require a 5-bit character preceding the common end tag integer  
5-bit character to separate it from a preceding name tag integer. Given the common end tag integer’s 
high frequency of occurrence, it should be coded with as few 5-bit characters as possible. Therefore, 
the second approach was selected. 
3.5.3 Name Tag Integer Digits 

A 5-bit character subset supports 32 possible code values. Three of these code values are reserved 
for transitions to the other 5-bit character subsets. The end-of-message code, <00000>, is reserved 
to support the 5-bit character boundary synchronization algorithm described previously, which leave 
28 possible code values available for the function that the 5-bit character subset implements. Of 
these, 26 form a continuous sequence of code values. They range from <00001> to <11010> 
inclusive. 

Each digit requires two 5-bit character codes, one for when additional digits of the same name tag 
integer follow, and the other for when no digit of the same name tag integer follow. To support the 
10 digits from 0 through 9 therefore requires 20 5-bit character codes. 
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If, instead of base-10 digits, base-13 digits were used, 26 available 5-bit character codes would be 
employed. The range of name tag integer values that a given number of 5-bit characters can represent 
is more extensive. One 5-bit character supports values up to 12 rather than 9, two 5-bit characters 
support values up to 168 rather than 99, three 5-bit characters support values up to 2,168 rather than 
999, and so on. Base-13 digits provide better compression compared to base 10-digits because more 
information is represented in the same number of 5-bit character bits. 

The base-13 digit that each associated 5-bit character represents, and whether additional 5-bit 
characters for base-13 digits are expected immediately after it, can be implemented easily by using  
a lookup table. Figure 10 provides an example of a large-value base-13 name tag integer computa-
tion. 

 
1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 

(22-13-1) × 132 + (18-13-1) × 13 + (4-1) 

= 1407 

Figure 10. Large-value name tag integer example. 

Base-13 digits employed 26 of the 28 available 5-bit character codes. One could use base-14 digits 
instead to employ all available 5-bit character codes. The decision not to do so was based on the 
desire to leave two 5-bit character codes available for possible future expansion and to simplify the 
algorithm performing base conversions. 
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